Parametric Fractional Imputation for a Model with Error in a Covariate

Emily Berg and Jae-kwang Kim

Center for Survey Statistics and Methodology Iowa State University

June 3, 2013

Outline

- Background
 - Models with measurement error in a covariate
 - Applications where measurement error is a concern
- ► Inference for a measurement error model with Parametric Fractional Impuation
- ▶ Partial measurement error, audit sample
 - National Resources Inventory link
- Simulations
- Discussion, future work

Framework

- Objective: inference for θ in $f(y|x, w; \theta)$
 - ► Linear:

$$y = \beta_0 + \beta_1 x + \beta_2' w + e, \quad e \sim (0, \sigma_e^2)$$

Exponential family:

$$f(y|x,w) = \exp\left[\phi^{-1}(y - b(\theta)) + c(y,\phi)\right]$$
$$b'(\theta) = \mu$$
$$g(\mu) = \beta_0 + \beta_1 x + \beta_2' w$$

- x is difficult or expensive to measure accurately
- Observe $z = x + \delta$

Examples of Measurement Error in Covariates

- ► Continuous response (Fuller, 1987)
 - y = corn yield
 - \rightarrow x = available soil nitrogen at 11 plots on Marshall soil in Iowa
 - z = measurement of soil nitrogen error due to subsampling and chemical analysis
- ▶ Binary response NHANES-I (Jones et al., 1987)
 - y =presence or absence of breast cancer
 - w = age, poverty index, BMI, alcohol consumption indicator, family history of breast cancer
 - x = long-term saturated fat intake (and other similar measures of long-term average nutrition)
 - ► z = dietary intake from 24-hour recall reporting error, specification error

Implications of Measurement Error

- Standard estimators of θ based on (y, z, w) instead of (y, x, w) may be biased
- Linear example (i = 1, ..., n)
 - Subject-matter model: $y_i = \beta_0 + \beta_1 x_i + e_i$, $e_i \sim (0, \sigma_e^2)$
 - Measurement error model:

$$z_i = x_i + u_i$$
, $(x_i, u_i)' \sim [(\mu_x, 0)', \text{diag}(\sigma_x^2, \sigma_u^2)]$

▶ OLS estimator of β_1 constructed with (z_i, y_i) biased

$$E[\hat{\beta}_{1,ols,zy}] = \kappa \beta_1, \quad \kappa = (\sigma_x^2 + \sigma_u^2)^{-1} \sigma_x^2$$

$$\hat{\beta}_{1,ols,zy} = \left[\sum_{i=1}^n (x_i - \bar{x}_n)^2 \right]^{-1} \sum_{i=1}^n (x_i - \bar{x}_n) y_i$$

Solution: Extra Information, Assumptions

External Calibration

$$(z_i, y_i)$$
 for $i \in \text{main sample}$
 (z_i, x_i) for $i \in \text{calibration sample}$

Internal Calibration

$$(z_i, y_i)$$
 for $i \in \text{main sample}$
 (z_i, y_i, x_i) for $i \in \text{subsample of main sample}$

- Instrumental variable assumption
 - (1) $g(z_i | x_i = a) \neq g(z_i | x_i = b)$ for some $a \neq b$
 - **2** $f(y_i|x_i;\theta)$ does not depend on z_i
- Assumption 2 sometimes called non-differential measurement error
 - Necessary for identifiability in external calibration, not for internal calibration

Inference for a Measurement Error Model with Parametric Fractional Imputation

- Formalization of measurement error model
- Subject-matter model: $y_i \sim f(y_i | x_i; \theta)$
 - $\triangleright \theta$ parameter of interest
- ► Measurement error model: $z_i \sim g(z_i | x_i; \alpha_1)$, $x_i \sim h(x_i; \alpha_2)$
 - α_1, α_2 nuisance parameters
- Calibration data structures
 - External calibration: $\{(x_i, z_i) : i \in A\}$, $\{(z_i, y_i) : i \in B\}$, $B \cap A = \phi$, sampling weights w_{iA}, w_{iB}
 - ▶ Internal calibration: $\{(x_i, z_i, y_i) : i \in A\}$, $\{(z_i, y_i) : i \in B\}$, $A \subset B$, sampling weights w_{iB}

Parametric Fractional Imputation (PFI)

- ► Kim (2011)
- Complete data estimating equation

$$U_{com}(\theta) = \sum_{i \in B} w_{iB} U_i(\theta; y_i, x_i)$$

- \triangleright Some x_i are unobserved
- Observed estimating equation

$$U_{obs}(\theta) = \sum_{i \in B} w_{iB} E[U_i(\theta; y_i, x_i) | D_{i,obs}]$$

- ▶ Solve $U_{obs}(\theta) = 0$ by Parametric Fractional Imputation
 - ightharpoonup Treat unobserved x_i as missing and impute

Parametric Fractional Imputation (PFI)

- EM algorithm by PFI
- 1 Impute by generating

$$x_i^{*(1)}, \dots, x_i^{*(m)}$$
 from a proposal $h(x_i)$

- ② Given initial $\hat{\theta}^{(0)}$, iterate (t = 0, 1, 2, ...)
 - (a.) Importance weight

$$w_{ij}(\hat{\theta}^{(t)}) \propto f(x_i^{*(j)}|D_{i,obs}; \hat{\theta}^{(t)})/h(x_i^{(j)})w_{iB}$$

 $D_{i,obs} = \text{ observed data for unit } i$

(b.) Update estimator of θ by solving

$$\sum_{i \in B} \sum_{j=1}^{m} w_{ij}(\hat{\theta}^{(t)}) U_i(\theta; y_i, x_i^{*(j)}) = 0$$

PFI for a Measurement Error Model

- ► Estimate $\alpha = (\alpha'_1, \alpha'_2)'$ from sample A.
- Estimating equation for θ

$$\begin{split} U(\theta \mid \hat{\alpha}) &= \sum_{i \in B} w_{iB} E[S(\theta; y_i, x_i) | D_{i,obs}, \hat{\alpha}, \theta] \\ S(\theta; y_i, x_i) &= \frac{\partial}{\partial \theta} \log[f(y_i | x_i; \theta)] \end{split}$$

- \triangleright $D_{i,obs}$ = observed data
 - ▶ Internal calibration: $D_{i,obs} = (y_i, x_i) : i \in A$ and $D_{i,obs} = (y_i, z_i) : i \in B \cap \bar{A}$
 - External calibration: $D_{i,obs} = (y_i, z_i)$
- Conditional distribution of unobserved given observed

$$f(x|y,z) \propto f(y|x;\theta)g(z|x;\alpha_1)h(x|\alpha_2)$$

PFI for a Measurement Error Model

- Consider external calibration
- For $j = 1, ..., m, i \in B$, generate $x_i^{*(j)} \sim h(x; \hat{\alpha}_2)$
- **2** $\hat{\theta}^{(0)}$ initial estimate of θ
- **3** For t = 0, 1, 2, ..., update the estimator of θ by solving,

$$\begin{split} 0 &= \sum_{i \in B} \sum_{j=1}^m w_{ij}^*(\hat{\theta}^{(t)}) S(\theta; x_i^{*(j)}, y_i) \\ w_{ij}^*(\hat{\theta}^{(t)}) &\propto f(y_i \,|\, x_i^{*(j)}; \hat{\theta}^{(t)}) g(z_i \,|\, x_i^{*(j)}; \hat{\alpha}_1) w_{iB} \end{split}$$

PFI for a Measurement Error Model

Alternative distributions for imputation

$$\begin{aligned} x_i^{*(j)} \sim h(x_i \mid z_i) &\rightarrow w_{ij}^*(\theta) \propto f(y \mid x; \theta) w_{iB} \\ x_i^{*(j)} \sim h(x_i \mid y_i, z_i) &\rightarrow w_{ij}^{*(\theta)} = w_{iB} \end{aligned}$$

► For the measurement error application $h(x_i; \hat{\alpha}_2)$ is convenient if $h(x_i|z_i)$ or $h(x_i|y_i, z_i)$ are intractable

EM Algorithm with Parametric Fractional Imputation

- ► Modification for internal calibration For $i \in A$, (y_i, x_i) observed; no need for conditional expectation Operationally, $w_{ij} = m^{-1}w_i$, $x_i^{*(j)} = x_i$ $(j = 1, ..., m; i \in A)$
- Hot-deck version

For each $i \in B$, "imputed" values $x_i^{*(j)}$ are the n_A observed values from the calibration sample.

$$(x_i^{*(1)}, \dots, x_i^{*(n_A)})' = (x_1, \dots, x_{n_A})'$$

Variance Estimation and Tests

Taylor Expansion

$$0 = U(\hat{\theta} \mid \hat{\alpha}) \approx U(\theta \mid \alpha) + D_1(\hat{\alpha} - \alpha) + D_2(\hat{\theta} - \theta)$$

$$(D_1, D_2) = E \left[\partial/\partial \alpha U(\theta \mid \alpha), \partial/\partial \theta U(\theta \mid \alpha) \right]$$

$$\hat{V}\{\hat{\theta}\} = (\hat{D}_1^{-1}) \left[\hat{V}\{U(\theta \mid \alpha)\} + \hat{D}_2 \hat{V}(\hat{\alpha}) \hat{D}_2' \right] (\hat{D}_1^{-1})'$$

- Score test
 - $\theta = (\theta_1', \theta_2')'$, null hypothesis: $\theta_2 = \theta_{2,0}$
 - ▶ PFI to estimate θ_1 subject to null hypothesis
 - ► Test statistic based on Taylor expansion (Rao et al., 1997)
 - Computationally simpler because estimation for full θ not required

Partial Measurement Error – NRI Connection

- National Resources Inventory (NRI) longitudinal survey, non-federal US land
 - Change in land cover and land use over time
 - Land cover/use (crop, urban, wetland), soil characteristis (slope, erodibility), measurements of erosion
 - Aerial photographs of sampled PSUs (segments, 160 acres), three points per segment (roughly)
 - Record-level data set with characteristics of sampled points from 1982,1987,1992,1997,2000-2010
- Sources of measurement error
 - Difficulty interpreting photographs of NRI segments
 - Misinterpretation of protocols
 - Errors in computer algorithms that convert collected data to measurements of erosion

Measurement Error in NRI

- ► Further investigation often identifies and corrects errors
 - Enhanced imagery such as Google maps
 - Subject-matter expertise
- Impractical to double-check every NRI point
- Suggests internal calibration
 - ▶ Initial sample collected data measured with error
 - ► Select a subsample check data for subsample
 - ▶ Some responses contaminated with measurement error, not all
- Connection with error in covariates
 - A response (Y) with respect to NRI estimation may be a covariate in a different context.

Partial Measurement Error, Internal Calibration

- ▶ Subject-matter model: $y_i \sim f(y_i | x_i; \theta)$
- Measurement error model

$$\begin{aligned} z_i &= (1 - \delta_i) x_i + \delta_i z_i^*, \quad z_i^* \sim g(z_i^* | x_i, \alpha_2), \quad x_i \sim h(x_i; \alpha_2) \\ \delta_i &\sim \text{Bernoulli}(p_i), \quad \text{logit}(p_i) = \phi_0 + \phi_1 y_i \end{aligned}$$

- Data structure
 - $(x_i, z_i, y_i, \delta_i) : i \in A, (z_i, y_i) : i \in B$
- Estimation and inference with PFI extension of methods for internal calibration

Simulation Model 1: Continuous Response

Model from Guo and Little (2011)

$$\begin{aligned} y_i &= \gamma_0 + \gamma_x x_i + e_i, \quad e_i \sim \mathrm{N}(0, \tau^2) \\ z_i &= \beta_0 + \beta_1 x_i + u_i, \quad u_i \sim \mathrm{N}(0, \sigma^2 |x_i|^{2\eta}) \\ x_i &\sim \mathrm{N}(\mu_x, \sigma_x^2) \end{aligned}$$

•
$$\theta = (\gamma_0, \gamma_x, \tau^2) = (0, 1, 1)$$

$$\alpha = (\beta_0, \beta_1, \sigma^2, \eta, \mu_x, \sigma_x^2) = (0, 0.5, 0.25, 0.4, 0, 1)$$

$$(\hat{\mu}_x, \hat{\sigma}_x^2) = (\bar{x}_{n,calib}, S_{x,calib}^2)$$

- ► MLE for $(\beta_0, \beta_1, \sigma^2, \eta)$ based on calibration data
- Calibration data structures
 - External calibration:

$$A = \{(x_i, z_i) : i = 1, \dots, 400\}, B = \{(y_i, z_i) : i = 1, \dots, 1600\}$$

Internal calibration:

$$A = \{(y_i, z_i, x_i) : i = 1, ..., 400\}, B = \{(y_i, z_i) : i = 1, ..., 1600\}$$

Simulation Model 1: Continuous Response

Internal calibration with partial measurement error

$$x_{i} \sim N(\mu_{x}, \sigma_{x}^{2})$$

$$y_{i} = \gamma_{0} + \gamma_{x}x_{i} + e_{i}, \quad e_{i} \sim N(0, \tau^{2})$$

$$\delta_{i} \sim \text{Binary}(p_{i})$$

$$p_{i} = \frac{\exp(\phi_{0} + \phi_{1}y_{i})}{1 + \exp(\phi_{0} + \phi_{1}y_{i})}$$

$$z_{i} = (1 - \delta_{i})x_{i} + \delta_{i}(\beta_{0} + \beta_{1}x_{i} + u_{i}), \quad u_{i} \sim N(0, \sigma^{2}|x_{i}|^{2\eta}).$$

$$\bullet \theta = (\gamma_{0}, \gamma_{x}, \tau^{2}) = (0, 1, 1)$$

$$\bullet \alpha = (\beta_{0}, \beta_{1}, \sigma^{2}, \eta, \mu_{x}, \sigma_{x}^{2}, \phi_{0}, \phi_{1}) = (0, 0.5, 0.25, 0.4, 0, 1)$$

$$\bullet \text{ Calibration data structure}$$

$$\bullet A = \{(x_{i}, \delta_{i}, z_{i}, y_{i}) : i = 1, ..., 400\}$$

$$\bullet B = \{(y_{i}, z_{i}) : i = 1, ..., 1600\}$$

Results: Inference for γ_x

Parameter	$E_{MC}[\hat{\gamma}_x]$	$100E_{MC}[\hat{V}(\hat{\gamma}_x)]$	$100 V_{MC}(\hat{\gamma}_x)$
External	0.98	0.23	0.24
Internal	1.00	0.13	0.12
Partial ME	1.00	0.08	0.08

- ▶ Variance decreases as acquire more information.
- ► Empirical p-value of score test of H_0 : $(\gamma_0, \gamma_x) = (0, 1)$ is 0.06 for internal and external calibration.

Simulation Model 2: Binary Response

- Many NRI variables are categorical: type of land cover (i.e., crop, pasture, urban, wetland...)
- Consider a binary response

$$y_i \sim \text{Bernoulli}(p_i), \quad \log \text{it}(p_i) = \gamma_0 + \gamma_x x_i$$

 $z_i = \beta_0 + \beta_1 x_i + u_i, \quad u_i \sim \text{N}(0, \sigma^2 |x_i|^{2\eta})$
 $x_i \sim \text{N}(\mu_x, \sigma_x^2)$

- $\theta = (\gamma_0, \gamma_x) = (0, 1), \ \alpha = (\beta_0, \beta_1, \sigma^2, \eta, \mu_x, \sigma_x^2)$
- ▶ External calibration

$$A = \{(x_i, z_i) : i = 1, ..., 800\}, B = \{(z_i, y_i) : i = 1, ..., 800\}$$

- Estimators: Naive, PFI, HDFI
 - ▶ Naive: logistic regression of y_i on z_i for sample B

Results: Binary Response

- MC bias, variance, and MSE of three estimators of γ_x
- ► True $\gamma_x = 1$

	MC Bias	MC Variance	MC MSE
Naive	-0.2241	0.0239	0.0742
PFI	0.0239	0.0386	0.0392
HDFI	0.0246	0.0387	0.0393

Results: Binary Response

	$E_{MC}[\hat{V}(\hat{\gamma}_x)]$	$V_{MC}(\hat{\gamma}_x)$	R.bias	Wald	Score
PFI	0.0386	0.0382	-0.0096	0.051	0.055
HDFI	0.0387	0.0383	-0.0093	0.061	0.062

- MC mean of estimators of the variance of $\hat{\gamma}_x$
- MC variance of estimators of γ_x
- ▶ Relative bias (R.bias) of the variance estimators
 - ► Ratio of MC bias of variance estimator to MC variance $\hat{\gamma}_x$
- Empirical coverages of tests of H_0 : $\gamma_x = 1$ with nominal coverage of 0.05.

Discussion, Future Work

- Parametric fractional imputation for a measurement error model
 - Computationally simple
 - Straightforward for complex samples

- Comparison with other methods
 - ▶ Bayes (multiple imputation), regression calibration
- NRI Applications
 - Address a specific area of measurement error in the NRI
 - Consider error in response
 - Attempt to reduce variance of estimators of means, improve estimators of quantiles, improve unit-level data

Thank You

References

- Fuller (1987). Measurement Error Models New York: Wiley.
- Guo, Y. and Little, R.J. (2011). Regression Analysis Involving Covariates with Heteroscedastic Measurement Error. *Statistics in Medicine*, 30, 18, 2278–2294.
- Jones, D.Y., Schatzkin, A., Green, S.B., Block, G., Brinton, L.A., Ziegler, R.G., Hoover, R. and Taylor, P.R. (1987), Dietary fat and breast cancer in NHANES-I: Epidemiologic follow-up study. *Journal of the National cancer Institute*, 79, 465–471.
- Kim (2011). Parametric fractional imputation for missing data analysis. *Biometrika*, 98, 119–132.
- Rao, J.N.K, Scott, A.J., and Skinner, C.J. (1998). Quasi-Score Tests with Survey Data. *Statistica Sinica*. 1059–1070.